Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Open Biol ; 14(4): 230383, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38629124

RESUMEN

Non-clustered protocadherins (ncPcdhs) are adhesive molecules with spatio-temporally regulated overlapping expression in the developing nervous system. Although their unique role in neurogenesis has been widely studied, their combinatorial role in brain physiology and pathology is poorly understood. Using probabilistic cell typing by in situ sequencing, we demonstrate combinatorial inter- and intra-familial expression of ncPcdhs in the developing mouse cortex and hippocampus, at single-cell resolution. We discovered the combinatorial expression of Protocadherin-19 (Pcdh19), a protein involved in PCDH19-clustering epilepsy, with Pcdh1, Pcdh9 or Cadherin 13 (Cdh13) in excitatory neurons. Using aggregation assays, we demonstrate a code-specific adhesion function of PCDH19; mosaic PCDH19 absence in PCDH19+9 and PCDH19 + CDH13, but not in PCDH19+1 codes, alters cell-cell interaction. Interestingly, we found that PCDH19 as a dominant protein in two heterophilic adhesion codes could promote trans-interaction between them. In addition, we discovered increased CDH13-mediated cell adhesion in the presence of PCDH19, suggesting a potential role of PCDH19 as an adhesion mediator of CDH13. Finally, we demonstrated novel cis-interactions between PCDH19 and PCDH1, PCDH9 and CDH13. These observations suggest that there is a unique combinatorial code with a cell- and region-specific characteristic where a single molecule defines the heterophilic cell-cell adhesion properties of each code.


Asunto(s)
Encéfalo , Adhesión Celular , Protocadherinas , Animales , Ratones , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Epilepsia/metabolismo , Neuronas/metabolismo
2.
Nat Commun ; 15(1): 1210, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331934

RESUMEN

We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.


Asunto(s)
Discapacidad Intelectual , Factores de Transcripción , Humanos , Masculino , Ratones , Animales , Factores de Transcripción/metabolismo , Estructuras R-Loop , Transporte Activo de Núcleo Celular , Discapacidad Intelectual/genética , Daño del ADN , Fenotipo , ARN Mensajero/metabolismo
3.
Front Oncol ; 13: 1177871, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483494

RESUMEN

Acute lymphoblastic leukemia (ALL) patients with a gain of chromosome 21, intrachromosomal amplification of chromosome 21 (iAMP21), or Down syndrome (DS), have increased expression of genes in the DS critical region (DSCR) of chromosome 21, including the high-mobility group nucleosome-binding protein 1, HMGN1. Children with DS are predisposed to develop hematologic malignancies, providing insight into the role of chromosome 21 in the development of leukemias. A 320-kb deletion in the pseudoautosomal region of the X/Y chromosome in leukemic cells, resulting in a gene fusion between the purinergic receptor and cytokine receptor-like factor-2 (P2Y Receptor Family Member 8 (P2RY8)::CRLF2), is a common feature in ~60% of DS-ALL and ~40% of iAMP21 patients, suggesting a link between chromosome 21 and P2RY8::CRLF2. In an Australian cohort of pediatric B-ALL patients with P2RY8::CRLF2 (n = 38), eight patients harbored gain of chromosome 21 (+21), and two patients had iAMP21, resulting in a significantly increased HMGN1 expression. An inducible CRISPR/Cas9 system was used to model P2RY8::CRLF2 and investigate its cooperation with HMGN1. This model was then used to validate HMGN1 as an influencing factor for P2RY8::CRLF2 development. Using Cas9 to cleave the DNA at the pseudoautosomal region without directed repair, cells expressing HMGN1 favored repair, resulting in P2RY8::CRLF2 generation, compared with cells without HMGN1. CRISPR/Cas9 P2RY8::CRLF2 cells expressing HMGN1 exhibit increased proliferation, thymic stromal lymphopoietin receptor (TSLPR) expression, and JAK/STAT signaling, consistent with cells from patients with P2RY8::CRLF2. Our patient expression data and unique CRISPR/Cas9 modeling, when taken together, suggest that HMGN1 increases the propensity for P2RY8::CRLF2 development. This has important implications for patients with DS, +21, or iAMP21.

4.
Sci Rep ; 13(1): 11017, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37419942

RESUMEN

Nanophthalmos is characterised by shorter posterior and anterior segments of the eye, with a predisposition towards high hyperopia and primary angle-closure glaucoma. Variants in TMEM98 have been associated with autosomal dominant nanophthalmos in multiple kindreds, but definitive evidence for causation has been limited. Here we used CRISPR/Cas9 mutagenesis to recreate the human nanophthalmos-associated TMEM98 p.(Ala193Pro) variant in mice. The p.(Ala193Pro) variant was associated with ocular phenotypes in both mice and humans, with dominant inheritance in humans and recessive inheritance in mice. Unlike their human counterparts, p.(Ala193Pro) homozygous mutant mice had normal axial length, normal intraocular pressure, and structurally normal scleral collagen. However, in both homozygous mice and heterozygous humans, the p.(Ala193Pro) variant was associated with discrete white spots throughout the retinal fundus, with corresponding retinal folds on histology. This direct comparison of a TMEM98 variant in mouse and human suggests that certain nanophthalmos-associated phenotypes are not only a consequence of a smaller eye, but that TMEM98 may itself play a primary role in retinal and scleral structure and integrity.


Asunto(s)
Glaucoma de Ángulo Cerrado , Hiperopía , Proteínas de la Membrana , Microftalmía , Animales , Humanos , Ratones , Fondo de Ojo , Glaucoma de Ángulo Cerrado/patología , Hiperopía/genética , Hiperopía/complicaciones , Proteínas de la Membrana/genética , Microftalmía/genética , Microftalmía/patología , Fenotipo
5.
Nature ; 614(7947): 343-348, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697821

RESUMEN

Transcriptional enhancer elements are responsible for orchestrating the temporal and spatial control over gene expression that is crucial for programming cell identity during development1-3. Here we describe a novel enhancer element that is important for regulating the expression of Prox1 in lymphatic endothelial cells. This evolutionarily conserved enhancer is bound by key lymphatic transcriptional regulators including GATA2, FOXC2, NFATC1 and PROX1. Genome editing of the enhancer to remove five nucleotides encompassing the GATA2-binding site resulted in perinatal death of homozygous mutant mice due to profound lymphatic vascular defects. Lymphatic endothelial cells in enhancer mutant mice exhibited reduced expression of genes characteristic of lymphatic endothelial cell identity and increased expression of genes characteristic of haemogenic endothelium, and acquired the capacity to generate haematopoietic cells. These data not only reveal a transcriptional enhancer element important for regulating Prox1 expression and lymphatic endothelial cell identity but also demonstrate that the lymphatic endothelium has haemogenic capacity, ordinarily repressed by Prox1.


Asunto(s)
Células Endoteliales , Elementos de Facilitación Genéticos , Hematopoyesis , Vasos Linfáticos , Animales , Ratones , Células Endoteliales/metabolismo , Elementos de Facilitación Genéticos/genética , Hematopoyesis/genética , Proteínas de Homeodominio/metabolismo , Vasos Linfáticos/citología , Vasos Linfáticos/metabolismo , Factores de Transcripción/metabolismo
6.
WIREs Mech Dis ; 15(1): e1580, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35909075

RESUMEN

CRISPR gene-editing technology creates precise and permanent modifications to DNA. It has significantly advanced our ability to generate animal disease models for use in biomedical research and also has potential to revolutionize the treatment of genetic disorders. Duchenne muscular dystrophy (DMD) is a monogenic muscle-wasting disease that could potentially benefit from the development of CRISPR therapy. It is commonly associated with mutations that disrupt the reading frame of the DMD gene that encodes dystrophin, an essential scaffolding protein that stabilizes striated muscles and protects them from contractile-induced damage. CRISPR enables the rapid generation of various animal models harboring mutations that closely simulates the wide variety of mutations observed in DMD patients. These models provide a platform for the testing of sequence-specific interventions like CRISPR therapy that aim to reframe or skip DMD mutations to restore functional dystrophin expression. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sistemas CRISPR-Cas/genética , Modelos Animales de Enfermedad , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Humanos
7.
Proc Natl Acad Sci U S A ; 119(46): e2213308119, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36346842

RESUMEN

Invasive rodents are a major cause of environmental damage and biodiversity loss, particularly on islands. Unlike insects, genetic biocontrol strategies including population-suppressing gene drives with biased inheritance have not been developed in mice. Here, we demonstrate a gene drive strategy (tCRISPR) that leverages super-Mendelian transmission of the t haplotype to spread inactivating mutations in a haplosufficient female fertility gene (Prl). Using spatially explicit individual-based in silico modeling, we show that tCRISPR can eradicate island populations under a range of realistic field-based parameter values. We also engineer transgenic tCRISPR mice that, crucially, exhibit biased transmission of the modified t haplotype and Prl mutations at levels our modeling predicts would be sufficient for eradication. This is an example of a feasible gene drive system for invasive alien rodent population control.


Asunto(s)
Biodiversidad , Tecnología de Genética Dirigida , Ratones , Femenino , Animales , Roedores , Genética de Población , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas
8.
JCI Insight ; 7(23)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36173683

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are characterized by pharmaco-resistant seizures with concomitant intellectual disability. Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the most severe of these syndromes. De novo variants in ion channels, including gain-of-function variants in KCNT1, which encodes for sodium activated potassium channel protein KNa1.1, have been found to play a major role in the etiology of EIMFS. Here, we test a potential precision therapeutic approach in KCNT1-associated DEE using a gene-silencing antisense oligonucleotide (ASO) approach. We generated a mouse model carrying the KCNT1 p.P924L pathogenic variant; only the homozygous animals presented with the frequent, debilitating seizures and developmental compromise that are seen in patients. After a single intracerebroventricular bolus injection of a Kcnt1 gapmer ASO in symptomatic mice at postnatal day 40, seizure frequency was significantly reduced, behavioral abnormalities improved, and overall survival was extended compared with mice treated with a control ASO (nonhybridizing sequence). ASO administration at neonatal age was also well tolerated and effective in controlling seizures and extending the life span of treated animals. The data presented here provide proof of concept for ASO-based gene silencing as a promising therapeutic approach in KCNT1-associated epilepsies.


Asunto(s)
Encefalopatías , Ratones , Animales , Convulsiones/genética , Convulsiones/terapia
9.
Methods Mol Biol ; 2495: 203-230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35696035

RESUMEN

Gene drives are genetic elements that are transmitted to greater than 50% of offspring and have potential for population modification or suppression. While gene drives are known to occur naturally, the recent emergence of CRISPR-Cas9 genome-editing technology has enabled generation of synthetic gene drives in a range of organisms including mosquitos, flies, and yeast. For example, studies in Anopheles mosquitos have demonstrated >95% transmission of CRISPR-engineered gene drive constructs, providing a possible strategy for malaria control. Recently published studies have also indicated that it may be possible to develop gene drive technology in invasive rodents such as mice. Here, we discuss the prospects for gene drive development in mice, including synthetic "homing drive" and X-shredder strategies as well as modifications of the naturally occurring t haplotype. We also provide detailed protocols for generation of gene drive mice through incorporation of plasmid-based transgenes in a targeted and non-targeted manner. Importantly, these protocols can be used for generating transgenic mice for any project that requires insertion of kilobase-scale transgenes such as knock-in of fluorescent reporters, gene swaps, overexpression/ectopic expression studies, and conditional "floxed" alleles.


Asunto(s)
Tecnología de Genética Dirigida , Animales , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Especies Introducidas , Ratones , Ratones Transgénicos , Transgenes
10.
Sci Transl Med ; 14(634): eabm4869, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35235341

RESUMEN

Central conducting lymphatic anomaly (CCLA), characterized by the dysfunction of core collecting lymphatic vessels including the thoracic duct and cisterna chyli, and presenting as chylothorax, pleural effusions, chylous ascites, and lymphedema, is a severe disorder often resulting in fetal or perinatal demise. Although pathogenic variants in RAS/mitogen activated protein kinase (MAPK) signaling pathway components have been documented in some patients with CCLA, the genetic etiology of the disorder remains uncharacterized in most cases. Here, we identified biallelic pathogenic variants in MDFIC, encoding the MyoD family inhibitor domain containing protein, in seven individuals with CCLA from six independent families. Clinical manifestations of affected fetuses and children included nonimmune hydrops fetalis (NIHF), pleural and pericardial effusions, and lymphedema. Generation of a mouse model of human MDFIC truncation variants revealed that homozygous mutant mice died perinatally exhibiting chylothorax. The lymphatic vasculature of homozygous Mdfic mutant mice was profoundly mispatterned and exhibited major defects in lymphatic vessel valve development. Mechanistically, we determined that MDFIC controls collective cell migration, an important early event during the formation of lymphatic vessel valves, by regulating integrin ß1 activation and the interaction between lymphatic endothelial cells and their surrounding extracellular matrix. Our work identifies MDFIC variants underlying human lymphatic disease and reveals a crucial, previously unrecognized role for MDFIC in the lymphatic vasculature. Ultimately, understanding the genetic and mechanistic basis of CCLA will facilitate the development and implementation of new therapeutic approaches to effectively treat this complex disease.


Asunto(s)
Quilotórax , Vasos Linfáticos , Linfedema , Factores Reguladores Miogénicos , Animales , Quilotórax/genética , Quilotórax/metabolismo , Células Endoteliales , Femenino , Humanos , Hidropesía Fetal/genética , Hidropesía Fetal/metabolismo , Vasos Linfáticos/patología , Linfedema/genética , Linfedema/metabolismo , Ratones , Factores Reguladores Miogénicos/genética , Embarazo
11.
Oncogene ; 41(6): 797-808, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857887

RESUMEN

The genetic basis of the predisposition for Down Syndrome (DS) patients to develop cytokine receptor-like factor 2 rearranged (CRLF2r) acute lymphoblastic leukemia (ALL) is currently unknown. Genes located on chromosome 21 and expressed in hematopoietic cells are likely candidates for investigation of CRLF2r DS-ALL pathogenesis. We explored the high-mobility group nucleosome-binding protein 1 (HMGN1), located in the DS critical region, in an inducible CRISPR/Cas9 knockout (KO) xenograft model to assess the effect of HMGN1 loss of function on the leukemic burden. We demonstrated HMGN1 KO-mitigated leukemic phenotypes including hepatosplenomegaly, thrombocytopenia, and anemia, commonly observed in leukemia patients, and significantly increased survival in vivo. HMGN1 overexpression in murine stem cells and Ba/F3 cells in vitro, in combination with P2RY8-CRLF2, resulted in cytokine-independent transformation and upregulation of cell signaling pathways associated with leukemic development. Finally, in vitro screening demonstrated successful targeting of P2RY8-CRLF2 and HMGN1 co-expressing cell lines and patient samples with fedratinib (JAK2 inhibitor), and GSK-J4 (demethylase inhibitor) in combination. Together, these data provide critical insight into the development and persistence of CRLF2r DS-ALL and identify HMGN1 as a potential therapeutic target to improve outcomes and reduce toxicity in this high-risk cohort of young patients.


Asunto(s)
Proteína HMGN1
12.
Viruses ; 13(11)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34834963

RESUMEN

Understanding the dynamic relationship between viral pathogens and cellular host factors is critical to furthering our knowledge of viral replication, disease mechanisms and development of anti-viral therapeutics. CRISPR genome editing technology has enhanced this understanding, by allowing identification of pro-viral and anti-viral cellular host factors for a wide range of viruses, most recently the cause of the COVID-19 pandemic, SARS-CoV-2. This review will discuss how CRISPR knockout and CRISPR activation genome-wide screening methods are a robust tool to investigate the viral life cycle and how other class 2 CRISPR systems are being repurposed for diagnostics.


Asunto(s)
Sistemas CRISPR-Cas , Enfermedades Transmisibles Emergentes/virología , Infecciones por Coronavirus/virología , Coronavirus/genética , Edición Génica , Infección por el Virus Zika/virología , Virus Zika/genética , COVID-19/diagnóstico , COVID-19/virología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Enfermedades Transmisibles Emergentes/diagnóstico , Coronavirus/fisiología , Infecciones por Coronavirus/diagnóstico , Interacciones Huésped-Patógeno , Humanos , SARS-CoV-2/genética , Virus Zika/fisiología , Infección por el Virus Zika/diagnóstico
13.
PLoS One ; 16(11): e0258538, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34739481

RESUMEN

Enhancers are vitally important during embryonic development to control the spatial and temporal expression of genes. Recently, large scale genome projects have identified a vast number of putative developmental regulatory elements. However, the proportion of these that have been functionally assessed is relatively low. While enhancers have traditionally been studied using reporter assays, this approach does not characterise their contribution to endogenous gene expression. We have studied the murine Nestin (Nes) intron 2 enhancer, which is widely used to direct exogenous gene expression within neural progenitor cells in cultured cells and in vivo. We generated CRISPR deletions of the enhancer region in mice and assessed their impact on Nes expression during embryonic development. Loss of the Nes neural enhancer significantly reduced Nes expression in the developing CNS by as much as 82%. By assessing NES protein localization, we also show that this enhancer region contains repressor element(s) that inhibit Nes expression within the vasculature. Previous reports have stated that Nes is an essential gene, and its loss causes embryonic lethality. We also generated 2 independent Nes null lines and show that both develop without any obvious phenotypic effects. Finally, through crossing of null and enhancer deletion mice we provide evidence of trans-chromosomal interaction of the Nes enhancer and promoter.


Asunto(s)
Sistema Nervioso Central/metabolismo , Desarrollo Embrionario/genética , Nestina/genética , Animales , Sistema Nervioso Central/embriología , Elementos de Facilitación Genéticos , Femenino , Regulación del Desarrollo de la Expresión Génica , Intrones/genética , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Embarazo
14.
Nucleic Acids Res ; 49(18): 10785-10795, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34534334

RESUMEN

Precise genomic modification using prime editing (PE) holds enormous potential for research and clinical applications. In this study, we generated all-in-one prime editing (PEA1) constructs that carry all the components required for PE, along with a selection marker. We tested these constructs (with selection) in HEK293T, K562, HeLa and mouse embryonic stem (ES) cells. We discovered that PE efficiency in HEK293T cells was much higher than previously observed, reaching up to 95% (mean 67%). The efficiency in K562 and HeLa cells, however, remained low. To improve PE efficiency in K562 and HeLa, we generated a nuclease prime editor and tested this system in these cell lines as well as mouse ES cells. PE-nuclease greatly increased prime editing initiation, however, installation of the intended edits was often accompanied by extra insertions derived from the repair template. Finally, we show that zygotic injection of the nuclease prime editor can generate correct modifications in mouse fetuses with up to 100% efficiency.


Asunto(s)
Proteína 9 Asociada a CRISPR , Edición Génica , Animales , Proteína 9 Asociada a CRISPR/genética , Células Cultivadas , Células Madre Embrionarias/metabolismo , Células HEK293 , Células HeLa , Humanos , Células K562 , Ratones , Plásmidos/genética , Cigoto
15.
Evol Appl ; 14(5): 1421-1435, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34025776

RESUMEN

Introduced rodent populations pose significant threats worldwide, with particularly severe impacts on islands. Advancements in genome editing have motivated interest in synthetic gene drives that could potentially provide efficient and localized suppression of invasive rodent populations. Application of such technologies will require rigorous population genomic surveys to evaluate population connectivity, taxonomic identification, and to inform design of gene drive localization mechanisms. One proposed approach leverages the predicted shifts in genetic variation that accompany island colonization, wherein founder effects, genetic drift, and island-specific selection are expected to result in locally fixed alleles (LFA) that are variable in neighboring nontarget populations. Engineering of guide RNAs that target LFA may thus yield gene drives that spread within invasive island populations, but would have limited impacts on nontarget populations in the event of an escape. Here we used pooled whole-genome sequencing of invasive mouse (Mus musculus) populations on four islands along with paired putative source populations to test genetic predictions of island colonization and characterize locally fixed Cas9 genomic targets. Patterns of variation across the genome reflected marked reductions in allelic diversity in island populations and moderate to high degrees of differentiation from nearby source populations despite relatively recent colonization. Locally fixed Cas9 sites in female fertility genes were observed in all island populations, including a small number with multiplexing potential. In practice, rigorous sampling of presumptive LFA will be essential to fully assess risk of resistance alleles. These results should serve to guide development of improved, spatially limited gene drive design in future applications.

16.
Reproduction ; 161(2): 135-144, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33434162

RESUMEN

Animal models are needed to develop interventions to prevent or treat intrauterine growth restriction (IUGR). Foetal growth rates and effects of in utero exposures differ between sexes, but little is known about sex-specific effects of increasing litter size. We established a murine IUGR model using pregnancies generated by multiple embryo transfers, and evaluated sex-specific responses to increasing litter size. CBAF1 embryos were collected at gestation day 0.5 (GD0.5) and 6, 8, 10 or 12 embryos were transferred into each uterine horn of pseudopregnant female CD1 mice (n = 32). Foetal and placental outcomes were measured at GD18.5. In the main experiment, foetuses were genotyped (Sry) for analysis of sex-specific outcomes. The number of implantation sites (P = 0.033) and litter size (number of foetuses, P = 0.008) correlated positively with the number of embryos transferred, while placental weight correlated negatively with litter size (both P < 0.01). The relationship between viable litter size and foetal weight differed between sexes (interaction P = 0.002), such that foetal weights of males (P = 0.002), but not females (P = 0.233), correlated negatively with litter size. Placental weight decreased with increasing litter size (P < 0.001) and was lower in females than males (P = 0.020). Our results suggest that male foetuses grow as fast as permitted by nutrient supply, whereas the female maintains placental reserve capacity. This strategy reflecting sex-specific gene expression is likely to place the male foetus at greater risk of death in the event of a 'second hit'.


Asunto(s)
Retardo del Crecimiento Fetal , Placenta , Animales , Modelos Animales de Enfermedad , Transferencia de Embrión , Femenino , Peso Fetal , Tamaño de la Camada , Masculino , Ratones , Embarazo
17.
Mol Neurobiol ; 58(5): 2005-2018, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33411240

RESUMEN

PCDH19-Clustering Epilepsy (PCDH19-CE) is an infantile onset disorder caused by mutation of the X-linked PCDH19 gene. Intriguingly, heterozygous females are affected while hemizygous males are not. While there is compelling evidence that this disorder stems from the coexistence of WT and PCDH19-null cells, the cellular mechanism underpinning the neurological phenotype remains unclear. Here, we investigate the impact of Pcdh19 WT and KO neuron mosaicism on synaptogenesis and network activity. Using our previously established knock-in and knock-out mouse models, together with CRISPR-Cas9 genome editing technology, we demonstrate a reduction in excitatory synaptic contacts between PCDH19-expressing and PCDH19-null neurons. Significantly altered neuronal morphology and neuronal network activities were also identified in the mixed populations. In addition, we show that in Pcdh19 heterozygous mice, where the coexistence of WT and KO neurons naturally occurs, aberrant contralateral axonal branching is present. Overall, our data show that mosaic expression of PCDH19 disrupts physiological neurite communication leading to abnormal neuronal activity, a hallmark of PCDH19-CE.


Asunto(s)
Cadherinas/genética , Epilepsia/genética , Red Nerviosa/fisiopatología , Sinapsis/fisiología , Animales , Axones/fisiología , Epilepsia/fisiopatología , Heterocigoto , Ratones , Ratones Noqueados , Mosaicismo , Mutación , Protocadherinas
18.
Reprod Fertil Dev ; 32(16): 1260-1270, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33166488

RESUMEN

Spermatogenesis is the male version of gametogenesis, where germ cells are transformed into haploid spermatozoa through a tightly controlled series of mitosis, meiosis and differentiation. This process is reliant on precisely timed changes in gene expression controlled by several different hormonal and transcriptional mechanisms. One important transcription factor is SRY-box transcription factor 3 (SOX3), which is transiently expressed within the uncommitted spermatogonial stem cell population. Sox3-null mouse testes exhibit a block in spermatogenesis, leading to infertility or subfertility. However, the molecular role of SOX3 during spermatogonial differentiation remains poorly understood because the genomic regions targeted by this transcription factor have not been identified. In this study we used chromatin immunoprecipitation sequencing to identify and characterise the endogenous genome-wide binding profile of SOX3 in mouse testes at Postnatal Day 7. We show that neurogenin3 (Neurog3 or Ngn3) is directly targeted by SOX3 in spermatogonial stem cells via a novel testes-specific binding site. We also implicate SOX3, for the first time, in direct regulation of histone gene expression and demonstrate that this function is shared by both neural progenitors and testes, and with another important transcription factor required for spermatogenesis, namely promyelocytic leukaemia zinc-finger (PLZF). Together, these data provide new insights into the function of SOX3 in different stem cell contexts.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción SOXB1/metabolismo , Espermatogénesis/fisiología , Testículo/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Factores de Transcripción SOXB1/genética
19.
CRISPR J ; 3(5): 388-397, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33095043

RESUMEN

CRISPR-based synthetic gene drives have the potential to deliver a more effective and humane method of invasive vertebrate pest control than current strategies. Relatively efficient CRISPR gene drive systems have been developed in insects and yeast but not in mammals. Here, we investigated the efficiency of CRISPR-Cas9-based gene drives in Mus musculus by constructing "split drive" systems where gRNA expression occurs on a separate chromosome to Cas9, which is under the control of either a zygotic (CAG) or germline (Vasa) promoter. While both systems generated double-strand breaks at their intended target site in vivo, no homology-directed repair between chromosomes ("homing") was detectable. Our data indicate that robust and specific Cas9 expression during meiosis is a critical requirement for the generation of efficient CRISPR-based synthetic gene drives in rodents.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Tecnología de Genética Dirigida , Genes Sintéticos , Meiosis , Cigoto , Animales , Proteína 9 Asociada a CRISPR/genética , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Regiones Promotoras Genéticas , ARN Guía de Kinetoplastida/metabolismo , Reparación del ADN por Recombinación
20.
Curr Opin Genet Dev ; 65: 169-175, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32726744

RESUMEN

PCDH19 Clustering Epilepsy (CE) is an intriguing early-onset seizure, autism and neurocognitive disorder with unique inheritance. The causative gene, PCDH19, is on the X-chromosome and encodes a cell-cell adhesion protein with restricted expression during brain development. Unlike other X-linked disorders, PCDH19-CE manifests in heterozygous females. Strikingly, hemizygous males are not affected. However, males with postzygotic somatic mutation in PCDH19 are affected and clinically similar to the affected females. PCDH19-CE is a disorder of cellular mosaicism. The coexistence of two different, but otherwise 'normal' cells in a PCDH19-CE individual, that is the wild type and the variant PCDH19 cells, has been proposed as the driving force of the disorder. This 'cellular interference' hypothesis could and has now been tested using sophisticated mouse models.


Asunto(s)
Cadherinas/genética , Epilepsia/genética , Epilepsia/patología , Genes Ligados a X , Mosaicismo , Animales , Humanos , Protocadherinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...